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Decision making is defined in terms of four elements: the set
of decisions, the set of outcomes for each decision, a set-valued criterion
function, the decision muker's value judgment for cach outcome, Various
i confidence structures are defined, which give the decision maker's
~onfidence of a given decision leading {0 a particular outcome. The
relation of certain confidence structures to Bayesian decision making
and to membership functions in fuzzy set theory is established. A
L aumber of schemes ave discussed for arriving at "'best' decisions,
and some new Lypes of domination structures are introduced.
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ABSTRACT

Decision making is defined in terms of four elements: the set
uf decisions, the set of outcomes for each deC1sion.la set-valued critericn
function, the decision maker's value judgement for each cutcome. Varl
confidence structures are defined, which give the decision maker's conti-
dence cf a given decision leading to 7 particular outcome. ?he rfl&tibﬂi
of certain'qonfideﬁ;e structures to quesia; Aec131on making and te
membership functions in fuzzy set theory is establishéé. A number of

schemes are discussed for arriving at "best" decisions, and some new

types . £ domination structures are intrcduced.
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1.  INTRODUCTION
We cousider the process of decision making to be composed of four
elements:
i) the set of all feasible alternatives (decisions) X with elements
denoted by x ,  resulting in
-ii1) the set of all possible outcomes ¥{(x) C B® for each feasible
alternative x € X , measured by
iii) the criterion function f(°) : x» Y(x) , a set-valued function
that messures the "value" cf a decision, and rinally
iv) the decisionr maker's "value judgement" or "preference" for each
outcome.
The totality of all possible outcomes is
Y=V {¥x) | x€x}cR
Phe coordinates in R may be used for indexing quantitative or qualitative
{linguistic) outcomes.
To illustrate these concepts we consider a simple investment problem
(SIP). The decision maker wishes to invest his savings $M so that he may be
well off in the future. Here, X includes all possible stock purchases
including deposits in banks. Of course, X may be not well defined. 1In fact,
generating "good" alternstives (elements of X ) is a very important ingredient
of the decision process. Let us suppose that the decision maker uses two
criteria, "growth rate of asset value" and "safety" to measure the desirability
of en investment (other criteria such as liquidity are important but we shall
not consider them here for the sake of simplicity). Note that, depending on
the economic situation, the outcomes of the decisions may be highly unpredict-

able, For instance, buying stock may yileld a high growth rate of asset value




|

and grelx<glféty in a bullish market, and quite the cppos;te in L bvsrkno e, ‘
The set of all possible outcomes of a dacision x Vg buy a certaln qtfc‘» .
(measired in terms of growth rate of as;et value tnd’»a;nty) ir 1\~»* *ffgiyg N
Once each Y(x) 1s specified, the set containirg all pos sib’e it mnl;‘h?”fi ~ - :
is known. 2 ' : ' n;"

The decision maker's value Judgement of each ~lement y € YV may be, f‘g
not simple. Va;ious wigys of forming such value Judgé;ents has been propngod; N
e.g., preference or utilify construction, cdomination structures, etc. _
Subsequ;atly wve shall classify value jJudgement in terms of single ﬂrvmulﬁix;e
criteria.

_ Henceforth wve shal)l assume that the decision-set X and the crite-

rion function f(*)are specified. We shall focus our attenticn on two questions:

e bt e s

How can one define the cutcones of a decisicn, and what are methods - vai‘e
Judgement for arriving at a good decision?

In some of the literaturé (for instance, that quoted in [‘O,P!])
uncertainty of outcome is treated in terms of a pricri prooability
distributions. Usually a single criterion is employed to defiﬁe the cutcome
of a decision. For many complex decision problems, uncertainty of cutcome
cannot be adequately represented by an a priori distridution. 1In the next

section we shall introduce the concept of confidence structures for the nur-

pose of treating uncertainty. It will be shown that this concept is closely
related to Bayesian a priori probability distribution and to Zadeh's member-
ship function. In Séction 3, we shall exhibit scme methods for attaining
good decisions with e variety of confidence structures and a number of
representations of value judgement or preference. In Section U, we shal)

presen™ a hierarvhy of general decision processes.




7. _CONFIDENCE STBUCTURES

Recall here that, given a decision x € X, the set of possible
outconesf is denoted by Y(x) . Of course, Y(x) depends on the decision
maker's prior belief. Loosely stated, ‘a confidence structure is a collectich
cf information or prior beliefs which specifies, for each feasible decision
¥ € X, a set of prior probebility measures for each outcome y € Y(x) to
be the outcome of x .

Tc help the intuitive understanding of confidence structure, ve
give first a definition for the case of Y(x) consisting of discrete points
only.

Definition 2.1. Suppose that, gi‘en oty x € X , Y(x) consists

~f discrete pointe only. let J denote the set of all nom-empty
subintervale (including -svlated points) of the interval [0,1].

A confidence structure over X (the set of all feasible decisioms)
and Y = VU {¥(x) | x € Xf (a set that includee all possible

outcomes of all feasible decisions) ie a set-valued functionﬁ

cle,e) : XxY~>J
We interpret c(x,y) = [a,b]€J ,x€X ,y €Y , to man that the
decision maker has confidenoe in terme of prior probability from "a" to "o"
that y will oocur if he makes dsocision x . The interval [s,v] e
called the M_ _i_gtcm‘ l for y to be the outoome of x .

t That is, outcomes whose probability of occurence is non-zero.

i Since Y may include points in outcome space which are not possible due

to a given decision x , one must allow 2ero probability.
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Exspple 2.1. Suppose the decision maker believes that his making a decisicn
x will result in only twc pnssitle outcomes, yl and y2 s With prota-
bilities in [0.2,0.6] and (0.4,0.T) , respectively. Then one can specify

8("‘) ® wvhere ol

[0.2,0.6] if y-"yl

clxyy) = (0.10,0.'(] ir y= y2

R A2 T

{o} othervise

Here, Y(x) # {y* .12}}!

Now suppose that Y 1is an arbitrary, not -hecessarily countable, sibset
' e o -
S Frior probability is not as readily specified as in Definftion 1.1,

however, the concept of probability measure appears to be useful, even though

= the intuitive meaning of confidence stricture sy be not as apparent.

N

Definition 2,2, Let Y be a collection of subsets of Y , and let J

be the get of all nom-empty subintervale (inoluding isolated pointe)
of the intemal {0,1] . A comfidence structure over X and V 1is
3 a get to set-valued function

Cle,e) t I xVY -]

We inierpr:t ((x,u) = [a,b] €J , x€ X ; UEY , to memi that

L

the deciaion maker has comfidence in terme of pimior probability

fivm "a" to "b" that the outcome of deotaion x will be in

act U .

Remark 2.i. Definitlon 2.2 is very general. To be mathematically
manaseable, set Y may have to have structure such as & J-algebri

«r Borel measurability. With this specification, ior decision x fixed,
a probability m~asure P(s) : ¥ + [0,1] sscisfying P(U) € C(x,U) for
all U €Y can represent » confidence structure for fixed x . Thus a

confidence structure induces, for each x € X , a class of probability
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measures which describe the decision naker's bdelief in the - .utcomes of
\his decision; for further discussion see Example 2.4, From the point
of view of information content, the smaller the confidence irtervals
C(x,U) , UEY , and the smaller the set VY , the better.
Since ve allow zero measure, we can extend Y to B s and ve

can use the concept of protability distribution fumction to define con-
fidence structurec.
Definition 2.3. Let ] demote the set of all non-empty subintervals
(including isolated points) of the interval [0,1] . A confiderce
structure 18 a set-valued fmtion

Cleye) : X xR ]
We interpret C(x.y) = [ap] €T ,x€X ,y €K , tomean that the
dectaion maker has oonfidance in terms of prior probability distributiom
from "a" to "b" that decisiomn x will result in an outcome not |
exoseding y ; that is,

Prob [{yYer | y<y}l€ [an].
Repark 2.2. Definitions 2.2 and 2.3, while defining confidence structures
in terms of probability measure, are cumberson for purposes of application.
To alleviate this we introduce the following ccnvention.

Convention 2.1. Let J be the set of all non-empty subintervals (in-

cluding tsolated points) of the nom-negative real half-ling. A confidence
structure over X and Y 18 a set-valued function

ele,0) X xY=J
such that, for each x € X , if y € Y(x) {ie& an isolated pa'zim‘,+ with

respect to Y(x) them c(x,y) {8 a swbinterval of [0,1] that

+’1’hut is, there is a neighborhood N of y such that N N Y(x) = {y} .
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specifies the range of the prior probability that y is the outcome
of x, and if y is not an isolated point with respect to Y(x)
then ci{x,y) 18 an interval df [0,°) that specifies the range of
the probability demsity that y is the outcome of x .

Remark 2.3. Suppose that Y C Ra
used for indexing qualitative (linguistic) outcome. Then the proba-

and one of the coordinate axes is

bility density in Convention 2.1 is defined on a one=dimencional

space. In general, if k € {0,1,...m-1} axes are used for indexing
qualitative outcomes, then the density function is défined cn m-k
dimensional space.

Example 2.2. In the SIP, fl(') and f () are the criterion functions:
for "growth rate of asset value" and "safety", respectively. Thus, the
higher their values, the better. Table 1 gives & set of choices, X ,
outcomes, Y{x) , and confidence intervals (in conformity with Convention
2.1). This is also illustrated in Figuwe 1. This example will be used

repeatedly hereafter.

Choice x | Outcome set Y(¥/ . Confidence interval c(x,y)

<

> v |y-yll<0'.6}

{y[1y-y*120.6} {0}

E1/2(1+|y-yll) ’ 1/(1#0y-y )]

where yl = (1.1,0.9)

x v2! a (0.4,0.5) (0.9,1]
y22 z (1.6,1.2) [0,0.05)
v ¢ {yel,yae}h {0}
X3 :y3 = (1.05,1) {1}
iyt y> {0}

TABLE 1, EXAMPLE 2.2
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FIGURE 1, EXAMPLE 2.2

An important special case of confidence structures, and the one
usually considered, is the ona for which c(x,y) is exactly one point
of [0,1] , s0 that it maps X x ¥ + [0,1] . To distinguish this from
‘the general case we state

Definition 2.4. A oomfidenoce structure c(+,*) will be called point-

valued iff, for each (x,y) € X XY , {1t contains exactly ome point of
[0,1] . It will be demotsd by M(+,*) : X x Y » [0,1] .
That ts,

clx,y) = {M(x,y)} v(x,y) €EXxY.
Exqyple 2.3, In the deterministic case, given any decision x° €x
there is one and only one outcome y° €Y , Then

{1} if y=y°
e(xy) = {0} ,othe}i'visle{
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and
1 irty=y°
M(x%y) =
0 otherwise

Exemple 2.4. Suppose that each decision x € X regults in outcomes which
depend on the occurrence of mutually exclusive and collectively exhaustive
events {El,Ee,...,Eq}; e.g., in the SIP, E,
be the prior probability for E

may indicate a bullish

market, E2 a bear’ sh one, etc. Let Pi

i=1,2,...,q, tooccur. Let y,(x) denote the outcome of decision x
i

i’

vhen event Ei occurs. Theén we can give the confidence structure as
\{Pi} if y= yi(x) » 121,2,...,q
c(x,y) = :
{0} Gtherwise

or, in terms of M(e,*) ,

, P ify = yi(x) s 12 1,2,.04,q
M(xloy) = .
0 otherwvise
More generally, M(x,*) : Y + [0,1] can be a probability density
function for y € Y tc be the outcome of x € X .

If one considers the value (or loss) of y to be a given function

V(¢) : Y > [0,#) (or L(+) : Y+ [0,2)) , then tie Bayes decision is the one

that maximizes g Py V(yi(x)) (or minimizes ?vPi L(yi(x))) over X .
i=] i=]1

For the continucus case, the summation is replaced by integration; see
Section 3.2.

Example 2.5. Suppose that all possible outcomes are qualitatively
(linguisticall;) described; e.g., in the SIP, the set cf all possible out-
comes can be: "very high return and very high risk", "very high return and
medium risk", "high return and very high risk", etc. Then Y can be an

index set of outcomes. That is, with each y € Y there is asscciated




a qualitative (linguistic) outcome. Now suppose that c(*,°) is point-
valued so that the causal relation between x and y 1is represented by
M(*,*) : X x ¥ + [0,1] ; that is, M(x,y) represents a prior belief that
y will be the outcome of x . Now suppose that y 1is fixed, say
ye= yo €Y. Then M(*,yo) : X+ [0,1] can be viewed as a membership
fupction 1n the sense of Zadeh [1-2] ; that is, H(x,ye) gives the
degree of membership of decision x in the qualitatively (linguistically)
descridbed outcome y° . Conversely, given a fuzzy set one can construct a
point-valued confidence structure.

In practice it may not be easy to specify c(x,y) as a poiut,
but it may be less difficult to specify it as a subinterval of [0,1] ;
see Sections 3 and L.
Remark gfh. In the Bayesian case (Example 2.4), the confidence structure
is represented by a family cf prior probability distributions, one for
each decisicn x € X . In the Zadeh case (Example 2.5), it is represented
by & set of membership functions, one for each y € Y . The membership
functions are not probability distributions, the sum of the degrees of
membership of a decision x need not equal one.

Next we consider a process of converting a general confidence
structure to a point-valued one.
Definition 2.._5,[3|. The principle of insufficient reason is: If one is
ocompletely ignorant as to which event among a eet of poseible events will
take place, then ome can behave as if they are equally likely to occur.

If one applies the principle of insufficient reason to confidence
structures, then the complexity of decision is greatly reduced, albeit at
the possible risk of obtaining a poor decision., Then each a < c(x,y) is

equally likely to be the true probvability of x resulting in y . Thus,

TTTE W~ L S _ : (it
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it c(x,y) = [a,b] , then the expected value of one's ‘onfidence ir

a+b
aral

haet

that is, one uses the expected value of the probability as a

representation for c(x,y) . More precisely, if c(x,y) = [a,b] , then

+
Mix,y) = a > b is used as a rcpresentation for ec{x,y) ; of course,

M(*,*) is a point-valued confidence structure. While M{x,*) : ¥ - {0,1]
need no% be a probability distribution, it can be normalized ?ntOvone by
dividing M(x,y) by the sum (or intepral) of M(x,y) over Y{x) , provide
] it is defined; see Example 2.k.

Example 2.6. (Continuation of Example 2.2). We shall apply the principle
of insufficient reason to the confidence structure given in Table 1.

For x = x1 we have then

1 3/h(1+|y-y1|) if ly-yll<0.6
M(x ) = {
0

. iy

otherwise

Letting

< -3
¢, = J ETi:T;:}ll) dy = gl-ﬁn 1.6
Y(x)

so that M(xl,-) : Y(xl) + [0,1] given by
M(x!,y) = 3/hc°(l+ly-yl|)
is a probability distribution.
In similar fashion, upon applying the principle of insufficient

reason, one obtains

0.95 it y = ¥21
M(x?.Y) = 0.025 if y = Y22
0] otherwise

and, after normalization,
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0.95/0.975 it y = y

WPy = ] Cozsi0Ts 52Ty y®
0 otherwise
To simplify our nomenclature we state
Definition 2.8. The proocsss of oomverting a general oonfidence structure
into a point-valued ome by means of the principle of insufficient reasom,
mluding normalisation, will be oalled the reduction process.

3.

In this section we describe some methods for decision making
with a variety of confidence structures. As mentioned before, the process
of decéision making depends not only on ‘the confidence structures for the
outcomes, but also on the "value judgement" or "prefereice" for the out-
comes. We classify tiie situation according to these two elements and
describe some methods for decision making. We begin with the simplest
case.

ol srninistic Confidence Struc 8,

In the deterministic case, each decision results in a unique
outcome; e.g., see Ex.mp}e 2.3, Thus we can use a function

£(e) : X+ Y
to define the relation between decisions and outcomes.

Value judgement mey involve a single (scalar) criterion or
a multiple (vector) criterion (multicriteria).

. . S V. 81 t n.

Here the possible outcome set Y 1is a subset of one-dimensional

Euclidean space. The points of Y may be arranged according to a preference

ordering or, in the case of qualitative (linguistic) outcomes, Y meay be

merely an index set. In either case, we shall suppose there is a real-valued
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function

Y-+R

o

u(e)

such that

1

: u(yl) > u(y2) iff y is preferred to y2 .

1 is indifferent %o y2 .

a(y?) = u(y?) 1er y
If Y is already arranged in ébcord with a preference ordering, then wu(+)

can be the identity map.

With function u(*) so specified, decision miking becomes a ‘

standard optimization problem : max'tu o f(x)]-
X

Generalizing u(+) to a total ordering over Y is feasible;
e.z., see [b-5] .

3.1.2. Deterministic Confidence Structure with a Multiple Criterion.

Here the possible cutcome set Y is a subset of m - dimensional
Eiclidean space with chitericn function f£(+) : X+»YCR", m>1 . Some
of the coordinates axes, that is some components of £(+) , may be used as
indices for quelitative (linguistic) oatcomes.

Decision problems involving multicriteria are common in practice.
For example, in the SIP the decision maker is concerned with growth rate
of asset value, safety, and probably others such as liquidity. In problems
of national energy planning, decision makers are subject to consideration
of self-sufficiency, cost of energy generation, unemployment, growth, etc.

Many solution concepts have been suggested for making decisions
with multicriteria. {lome of these are outlined below; for a survey, see
[6,7] . ‘Except for (£{) and (4{) of the listed methods, some monotoni-
city according to preference is assumed for each component fi(-) of () ,
including the case for which an fi(-) indexes a qualitative outcome. For

example, in the CIP, f1(°) may assume values in an index set {1,2,...,5}
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vith 1 representing "very high growth rate"; 2 "above average growth rate",

3 "average growth rate”, L "belov aversge growth rate”, and 5 "very low
grovth rate.”

(4)

(4i)

(k)

(&v)

One-dimensional cosparison. 'Here, the sulticriteria problem is

converted into a single criterion one. In this category are

goal programiing [8,9] , the additive weight method, coni:rmige
solutions [10,11] , utility construction (28] .” and lexico-
graphic ordering.

Ordaring apd renking. Instead of defining a. real-valued function
over Y as in ({) , one defines a binary reigtion which may be
a partial ordering over Y . Then one seeks the maxismum or
minimum elements over Y , provided such exist. Among such
methods are Pareto-optimality, efficient solutions; ‘outranking
relations [12] , snd preference ordering [4,5] .

Dominstion structures and nondominated solutions. Here, for
each y €Y , one defines a set of domination fectors. D(y)

such that, iff y° ¢ y ;nd v €y +Dly) , then y° is
dominated by y . An outcome that is not dominated by any

other outcome is nondominated, and the final decision i3 to
result in nondominated cnes. For a detailed discussion, in-
cluding the relation to ({) and (&) , see [6,13,14,19] .
Satisficing modgls. In this approach, the decision maker
establishes first either

(1) o minimal "satisfaction" level for each criterion,

or

(2) an upper "goal achievement" level for each criterion.

In the first case, a decision resulting in any criterion not
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meeting or exceeding the minima) satisfaction level is un-
acceptable and ruled out as a candidate for a fine) decicsion,

In the second case, any decision that results in all criteria

meeting or exceeding the upper goal achievement level is
acceptable for a final decision:

(v} Iterative or adaptive procedures. In these methods, a final

decision is obtained in a sequence of steps. In one such

‘method, at each étep one considers the (remaining) feasible
decisions and their outcomes, and eliminates the dominated

f ones from further éonsiderationr A final decision is selected
from among thosé vhich cannot be eliminated by this process

[6) . 1In another method, one begins with a particular feasible

o

decision and then finds a "better" one at each step until
improvement becomes impossible. Guch a technijue, similar to

a gradient search, is described in [IS]V.

Some of the methods listed above can be combined in solving a
particular dacision problem. For instance, a combination of ({) and
(iv) may result in a mathematical programming or an optimal control

problem.

3.2, . Point-Valued Confidence Structurus.

If the confiidence structure is not deterministic, decision making is
more complex. In this section we consider decision making with point-valued
confidence structuresy e.g., see Examples 2.4 and 2.5,

3.2.1, Pcint-Valued Confidence Structure with a Single Criterion.

As ir Sectien 3.1.1, we consider ~ real-valued function wu(e) : v » &

n
such that u(yl) > u(ye) = yl is preferred to y¥° .
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Ve shall suppose that the following are defined for each

x € X (recall Convention 2.1):

E(x) = ] u(y) M(x,y) + u(y) Mix.y) dy (1)
y €1, (x) 1,(x)

V(z) = ] [uty) - E(x))® M(x,y)
y € !l(x)

M ! ) [aly) - 2(x)]2 N(x,y) ay (2)
(%)

vhere .
Y,(x) = {y € X(x) | y 1s an 1soleted point v.r.t. Y(x)} (3)
Y.‘,(x) = {y € Y(x) | y s not an isolated point w.r.t. Y(x)} (L)

It M(x,*) is s probability meo;sure*, then E(x) and V(x) are
the expected value and variance, respectively, of u(*) with respect to
N(x,*) .

The following decision optimization methods may be useful:

(4) Maximizgtion of expected vglue. Here one seeks x* € X such that

E(x®*) » E(x) for all x € X . Suppose that u(*) is "convex

1ineus" in terms of lotteries. That is, 1f y° = ay' + (1-a) y° ,

a € [0,1] ; represents an outcome with chance a to have outcome

yl and (1-a) to have outcome y2 , then u(y°) = cm(yl) + (1-a)

u(ya) « In this event, maximizing the expected value seems logically

sound. Unfortunately, such a utility function is difficult to find.
(i) Tvo criteris for value judgement. Here ve treat E(x) and V(x)

as two criteria for value judgement in decision making. Since V(x)

is the variance of u(*) , it uay be regarded as a measure of

"fluctuation” or "risk." Such a two criteria formulation has been

used extensively in portfolio analysis [16] . Of course, the

r‘rhct is, the total measure of MN{(x,*) .over Y(x) is one. Recall that,

by Convention 2.1, M(x,*) on Yl(x) is & prior probability, whereas on
Y,(x) 1t is a probability density.

o e M o




«16-

méthods listed in Seciion 3.1.2 are appli;abie here. Note that a
non-deterministic single cniter;én problem has leen converted into
a deterministic two criteria one. /
(44i) Chance constraint formulation. Let
Y, = {y € Y/;I’ uly) > v} |

X(B,y) = {x€ x|} . Mlx,y) + [ M(x,y) d y > B8}
y € Yl(x)\ﬁ IY Yb(x) N YY

where Y](x) and Ye(x) are defined in (3) and (h),‘fespectively.

Loosely speaking; X(B,Y) is the éet éf feasible decisions
‘ Qﬁose final outcome in terms of u(e) hfs yrobabiiity of at leﬁst

B of exceeding a specified level Y . 'wiih Y arnd B specified,

the chance constraint formulation is that of maximizing E(x) over

X(B,y) 3 e.g., see [17] . This formulaticn combines the features

of expected value maximization with those of a satisficing medel,

Again, combining two methods such as ({{) and {({iL) is possible.

3.2.2, Point-Valued Confidence with a Multiple triterion.

If outcomes are specified in terms of a multiple criterion with a
point-valued confidence structure, decision makirg is more difficult than in
the case of a multiple criterion with a deterministic confidence structure
(Section 3.1.2), or in the case of a single criterion with point<valued con-
fidence structure (Section 3.2.1). While it may be possible to combine the
methods of Section 3.1.2 and 3.2.1, the success of so doing will depend ¢n
the skill of the decision maker. Here we merely list some possibilities.

(£) Suppose the problem can be converted into a single criterion

one as in (4) of Section 3.1.2. Then it is a single criterion

problem witn point-valued confidence structure and the meth de

of Section 3.2.1 apply.
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(4i) Suppose the problem camnot be couverted into a single criterion

: one. Then one can introduce a simple utility function for each

- outcome component. Namely, if s higher outcome value is preferred

- to a lover one, let u(y) =y = £,(x), 1=1,2,...,8. Then

one proceeds as in: Section 3.2.1 by forming expected values and

- variances

| Bl ) M) . [ u, ) Mxy) ay (5)
1) - (x)

,‘.—, 2 ‘ ’
v, (x) -}Yl(x) [u, (¥) - B, (x)]° M(x.y)

o T e l( Loy o) - 5, (01 Nixy) &y (6)

(X
i9.1,2,..0,m
i vhere “Xl(x)‘ and !a(x) are defined by (3) and (L), respectively.
Thus, by doubling the number of criteria, one converts a
problem with point-valued confidence structure into one with deter-
ministic structure as in ({{) of Section 3.2.1. Of course, one can
also convert the »probic'n into an m-criteria one with m chance coh-
straints as in ({{L) of Section 3.2.1. In either case, the problem
is reduced to one of multicriteria vith deterministic confidence
structure, so that the methods of Section 3.1.2 become applicable.
In the remainder of this section we descride a new type of
nondominated decisions (that is, decisions resulting in nondominated
- outcomes) for problems with point-valued confidence structures.

(Lid) As aiscussed in ({{L) of Section 3.1.2, given v' ana 2

ire y2 € yl + D(yl«) then y2 ainated by yl . Now, given

decisions x* and x°

in Y,

in X witih possible outcome sets Y(xl‘)r and

Y(x2) , respectively, 1£f y° € y* # D(y}) for a1l y* € Y(x!) and
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y2 € Y(xe)l then x2 is dominated by xl . Loosely speaking,

decision 12 is dominated by decision x] if every possidble out-

come of 12 is dominated by every possible outcome of xl . In

Figure 2, Y(xl) and a constant domination cone D(y) are given.

Tecision x° is dominated by x

region B, vhereas xl

12 Y(x?) 1is contained in

2 ir Y(xa) is contained

is dominated by x

in region A.

Mgure 2, Domination Btructure

The above definition of domination may be too restrictive. To.
make the concept less restrictive, let us introduce the following
kind of domination. For each x€X, a€ [0,1], B€ [0,®) , 1et
Yg(x) = {y € Y, (x) | (x,y) > a} (1)

O(x) = {y € 1,(x) | M(x,y) > 6) (8)




L

where Yl(x) and Yz(x) are given by (3) and (4), respectively.*
Loosely speaking, Y‘;(x) [Yg(x)] is the set of all outcomes of
decision x having probability [probab_ility -density] equal to or

greater than a [B] . Now, given & and B, ané a domination

’e X 1is dominated by xl € X

with respect to (a,8,D(¢)) iff y2 € yl + D(yl) for all

y? € rg(x?) u yg(x"‘) aa y' e v v yg(xl) .

structure D(*) : yb D(y) CR® , x

A nondominated decision is -one which is not domineted by any other
feasible decision. Roughly speaking, the domination relation is
defined over those outcomes which have high enough probability of
resulting from the decisions considered.

Example 2.1. Let M(xi.y) , 1 =1,2, be as given in Example 2.6.
Let a=0.05 and 8 = 0.4 . Then Y‘;(xl) = Y‘g(xa) =g, and

Yg(xl) ={y |1y -yll < 0.6}
6°) = )

Figure 3 shows Yg(xl) and. Yg(xa) togethér with a constant

domination cone . D(y) .

1 Recall Convention 2.1.
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Figure 3, Example 3.1

For the given domination cone D(y) , decision x2 is dominated by
x1 » ‘80 that xl is nondominated. .

If a=0.01 and B = 0.4, then Yg(xz) = 1, 2
12 is not.A-minated by xl , nor is xl dominated by x2 . Thus
both decisions are nondominated in this case.

In general, the larger o and B are, the smaller is the set
of nondominated decisions. If o and B are too large, Y?(x) and

Yg(x) may be empty and the domination relation ceases to be

meaningful.,

b ey gkl S,

aaintl




3.3 Gereral Confidence Structures.

Recall Convention 2.1 for general confidence structures and

Definition 2.6 for the reduction process of converting a general confidence

structure into a point-valued one..

3.3.1. General Confidence Structure with a Single Criterion.

In this case one can convert the general confidence structure into
8 point-vaiued oﬁe by the reduction process discussed in Section 2. Thereafter
fhe methods of Section 2.3.1 are applicable.

There is one special case that is somewhat "equivalent" to & multi-
criteris problem with deterministic confidence structure. This case is charac-
terized by the fact that the number of possible outcomes of each decision is

finite and fixed. For exampie in the SIP, if asset value is the only concern,

the outcomes of each decision may depend eithér on a bearish market or a bullish

one. Thus the possible outcomes of each decision may be represented by a pair
of real numbers. In general, if the outcomes of each decisica x depend on
m possible situations, then they may be represented by m real numbers

‘£,(x)ye0f (x)) . Now let I, be an interval of [0,1] indicating the

confidencé that the i~th situation will occur. More precisely, let the confi-

dence structure be given by

I, it y = fi(x)

i
cl(x,y) =

{0} otherwise
Now let X 3»(Al,...,lm) and

n

m -
@={\€R lxie:ri,ZAi-l}

i=]




A P T—

«22-

Thius each A € @ represents a prior probability that is consistent with the
confidence structure because. each Al € Ii . Note that, given a ‘A € Q, the
expected value of outcome for a given decision x is % Ai fi(x) . Maximiza-
tion of expected value over X 1is equivalent to maximi;ing the value of additive
weight function A  f(x) with A€ Q. Let A={a X | a>»0,A€Q} and

A®* = {4 € . | e A< O¥XEQ} ; hence, A* is the polar cone of A .

From [6,13] it is seen that the confidence structu e induces a domination
structure such that int A*C D(y) for all y€ Y where Y = {f(x) | x € X} .
As shown in [6,13] s the advantage of using domination structures is that good

candidates are not disregarded when Y does not possess suitable cone-convexity.

3.3.2.  Genéral Confidence Structure with a Multiple Criterion.

This is the most general as well as the most comfiion decision problem.
It may be possible first to convert the multicriteria problem into one with
single criterion, and then t¢ apply the methods of Section 3.3.1. 1t may aiso
be possible to use the reduction process of converting a general ccnfidence
structure intc a point-valued one, and then to apply the methods of Section
3.2.2. A combination of these steps may be possible depending on the parti-
cular problem.

Another method may be an extension of that of ({L) of Seection 3.
Let a(x,y) and b(x,y) denote the greatest lower bound and the least upper
bound, réspectively, of confidence interval :(x,y) . Analogously to (7) and

(8) define

[{]

2(x) = {y € ,(x) | Plalx,y) , blx,y)) > a} ()

B0 = {y € 1,(x) [ ®lalx,y) , blxyy)) > B (10)

where P(e,*) : RE > R+ . For instance, if one applies the principle of

insufficient reason,




T
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P(alx,y) , b(x,y)) =% [a(x,y) + b(x,y)]

or one may let -

P(Q(XQY) ’ b(X,Y)) = b(X,Y) .

Nov we introduce the following value judgement. Given P(+,*) ;, o , B

and a domination structure D(¢) , x2 € X 1is dominated by xl € X with respect

to (B(4y) ,a, 8, 0() 1rr y¥ €yt s nlyh) for a1 YPe A Ul -

and yl € ;g(xl) v ;g(xl) . .

The proper specification of P(¢,*) , a , B and D(¢) is élearly

of great importance and remains a subject for further investigation.

4.  HIERARCHY OF DECISION PROCESSES. o
In view of the discussion of Section 3, it appears reasonable to
set up a hierarchy of decision processes. After feasible decision set X

is specified, & decision problem is characterized by its confidence structure

and by the value judgement of the outcomes. The process begins at the most
comron starting point, multicriteria with a general confidence structure, and
ends with Jdoption of a final decision. During the process, consecutive
simplification of confidence structure and value judgement takes place.

Table 2 shows the direction of simplification as indicated by the arrow.

/
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¥
8.0 A -
X, Y ®
o % %, )
& %, & -
— @ )
Multicriteria Single Criterion
General Start T( > —e
v ¥
Point-Valued >
Y ‘b
Deterministic ¢ - = Finish

5. _CONCLUSION

Table 2, Decision Process

The concept of confidence structure has been introduced irito decision

making problems.

Various concepts and techniques for simplifying and solving

such problems have been discussed, and a hierarchy of decision processes has

been outlined.
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